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Abstract

The solution of the time-dependent wave equation in an unbounded domain is considered. An artificial boundary B is
introduced which encloses a finite computational domain. On B an absorbing boundary condition (ABC) is imposed. A
formulation of local high-order ABCs recently proposed by Hagstrom and Warburton and based on a modification of
the Higdon ABCs, is further developed and extended in a number of ways. First, the ABC is analyzed in new ways
and important information is extracted from this analysis. Second, The ABCs are extended to the case of a dispersive med-

ium, for which the Klein–Gordon wave equation governs. Third, the case of a stratified medium is considered and the way
to apply the ABCs to this case is explained. Fourth, the ABCs are extended to take into account evanescent modes in the
exact solution. The analysis is applied throughout this paper to two-dimensional wave guides. Two numerical algorithms
incorporating these ABCs are considered: a standard semi-discrete finite element formulation in space followed by time-
stepping, and a high-order finite difference discretization in space and time. Numerical examples are provided to demon-
strate the performance of the extended ABCs using these two methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

With the improvement of computational methods for the solution of wave problems in unbounded media,
as encountered in geophysics, weather prediction, underwater acoustics, aeroacoustics, etc., the need for and
interest in accurate schemes for treating artificial boundaries has increased in recent years. Among these
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methods, two have emerged as especially powerful [1]. The first one is the perfectly matched layer (PML)
method, devised by Bérenger [2] in 1994 and since then further developed and used by many authors (see also
[3]). The second type of method is that of high-order absorbing boundary conditions (ABCs). The use of ABCs
has been very popular since the early 1970s – see the survey in [4] – but the recent development referred to here
is the ability to use ABCs of an arbitrarily high order. The first such ABC has been devised by Collino [5] in
1993, and a few other formulations followed; see a survey in [6].

ABCs are boundary conditions imposed on artificial boundaries of computational domains. Given a wave
problem in an unbounded medium, the infinite domain is truncated via an artificial boundary B, thus dividing
it into a finite computational domain X and a residual infinite domain D. A special boundary condition, called
an ABC, is imposed on B in order to complete the statement of the problem in X (i.e. make the solution in X
unique) and to ensure that no (or little) spurious wave reflection occurs from B. The problem is then solved
numerically in X. The setup is illustrated in Fig. 1 for a two-dimensional semi-infinite wave-guide. In this
setup, which will serve as a prototype for this paper, B ¼ CE is a cross-section of the wave-guide which con-
stitutes the east side of X.

In theory, some of the classical ABCs, such as the Engquist-Majda ABCs [7] or the Bayliss–Turkel ABCs [8]
can be defined up to any desired order. However, the appearance of increasingly high order derivatives in these
ABCs renders them impractical beyond a certain order, typically 2 or 3. For example, the P-order Higdon
ABC [9,10] involves P-order derivatives in space and time, and is thus very inconvenient for implementation
when P is large. In fact, discrete Higdon conditions were developed in the literature, with the exception of [11],
up to third order only.

There are two ways to construct practical ABCs with arbitrarily high order accuracy. The first way is to
use an ABC based on a nonlocal operator; examples include the early work of Fix and Marin [12] and the
Dirichlet-to-Neumann ABC [13], both in the frequency domain. However, in the time-domain nonlocal
ABCs nonlocal conditions also require time convolutions. Although these can be treated efficiently in many
cases [14], the nonlocal methods are inflexible in terms of the computational domain (e.g. rectangular bound-
aries cannot be used) and the governing equations (e.g. such methods are unavailable for stratified media.)
The second type of high-order ABCs are those which make use of special auxiliary variables. The latter elim-
inate the need for any high-order derivatives; thus these ABCs can be practically employed with an arbi-
trarily high order [6,15]. One example is the high-order ABC of Hagstrom and Hariharan [16] for
circular and spherical boundaries. Givoli and Neta [17,18] reformulated the Higdon ABC (in Cartesian coor-
dinates) as a high-order ABC. Later, Hagstrom and Warburton [19] proposed a modification to the Givoli–
Neta formulation with enhanced stability. The Hagstrom–Warburton (H–W) formulation is the basis for the
present paper.

In [20] we compare the H–W formulation with the Givoli–Neta formulation from various aspects, and
apply the former to exterior wave problems in two dimensions using a finite element scheme. In doing this
we have to use special corner conditions at the four corners of the artificial boundaries. In [21] we concentrate
on the question of choosing the computational parameters 0 < aj 6 1, for j ¼ 0; 1; . . . P , which appear in the
P-order H–W ABC and which signify cosines of incidence angles. A point of emphasis in [21] is that a com-
parison of boundary conditions based solely on the magnitude of reflection coefficients for propagating modes
is a poor predictor of actual performance, particularly as the order is increased. This fact has been noted
before, for example by Taflove and Hagness [22, Chapter 6]. In this reference it is suggested that the cause
is wave speed mismatch resulting from discretization error. However, the highly-resolved calculations per-
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Fig. 1. A semi-infinite wave-guide, with an artificial boundary B ¼ CE on which an ABC is to be applied.
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formed in [21] effectively rule out this explanation. In fact, the exact error analysis presented by Diaz and Joly
[23] recommends the choice aj ¼ 1 for all j. In [21] we find that this choice is satisfactory in general, although
not necessarily optimal. In addition, we present and test an adaptive scheme which controls the time-varying
values of P and the aj.

In the present paper we consider the H–W formulation in a two-dimensional wave guide, as in Fig. 1. Thus
we avoid the issue of corner conditions, which is outside the scope of this paper. In most of our developments
we make the simple choice of parameters aj ¼ 1, following the general conclusions of [21]. This choice is
shown to be acceptable for moderate solution times and accuracy requirements, though for more challenging
examples we use the evanescent mode corrections introduced below.

There has been much discussion in the literature concerning the relative merits of ABC and PML (see e.g.
[22, Chapter 7] and [24, Chapter 7]). However, as was first shown by Asvadurov et al. in [25], the methods
are in fact deeply connected. As we will mention below, the H–W formulation used here can be interpreted
as a particular semi-discretization of a PML. Exact error analysis presented in [26] does indicate that the
long time behavior of standard PML formulations is better than that of standard ABCs. However, the
inclusion of evanescent mode corrections removes this difficulty, leading to optimal long time error esti-
mates [27,28]. Of course the actual performance of any method will depend on the details of the discretiza-
tion. We will show below that even for marginally resolved discretizations using standard linear finite
elements we can achieve an accuracy which is on average as good as can be obtained with an extended
domain calculation.

The purpose of this paper is to further develop and extend the H–W ABCs in various ways. Since it is
desired that these ABCs eventually become a practical and powerful tool in the solution of realistic problems
in fields like geophysics, weather prediction, aeroacoustics, etc., it is very important to make them applicable
and verify their good performance for the widest possible range of configurations. Admittedly, the basic gov-
erning equation used in this paper (the Klein–Gordon equation, or as a special case the standard wave equa-
tion) is relatively simple, and it would be interesting and important to check how the proposed ideas are
carried over to more involved problems such as those governed by the shallow water equations, Maxwell’s
equations and the linearized Euler equations. However, we feel that before attacking these more complicated
problems it is essential to validate the new techniques developed here by applying them to a simple class of
problems that would still highlight all the basic numerical phenomena involved, and would give a good eval-
uation of the method performance.

We discuss the incorporation of the extended ABCs in two different numerical schemes. The first is a
finite element formulation using bilinear elements in space and a Newmark (2nd-order accurate) scheme
in time, which is implemented slightly differently than in [20]. The second is based on a high-order finite
difference discretization in space and time, and yields much more accurate results. Despite the higher accu-
racy of the latter, we feel that it is important to include the FE formulation and results here, for two rea-
sons. First, the superiority of the FD scheme originates only from the fact that the FD stencil used is high-
order in space and time, whereas the FE scheme chosen is the most standard one, hence low order in space
and time. Of course, replacing the standard FE scheme by a high-order FE method (p-version or spectral
elements) is bound to eliminate this limitation in accuracy. Second, FE codes are very commonly used in
various fields of application, and we would like to enable one to incorporate the ABC proposed here in
an existing FE code.

After recalling the basic H–W formulation (Section 2), we derive the algebraic ABC equations obtained
for the basic wave-guide modes (which are identical to the plane wave equations in the exterior case),
solve these equations analytically, and extract important information from the solution (Section 3). Then
we calculate the error associated with the P-order ABC operator with respect to the exact boundary oper-
ator (Section 4). We show how the ABCs can be extended for a dispersive medium, where the Klein–Gor-
don wave equation governs (Section 5), for a stratified medium (Section 6) and for the case where
evanescent modes (and not only propagating modes) are taken into account by the ABC (Section 7).
We discuss the incorporation of the extended ABCs in the two different numerical schemes mentioned
above (Section 8). We present some numerical examples using these two schemes to demonstrate the
performance of the extended ABCs (Section 9). We end the paper with some concluding remarks (Section
10).
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2. The basic formulation

We consider waves propagating in a two-dimensional guide of width b as described in Fig. 1. A Cartesian
coordinate system ðx; yÞ is introduced such that the longitudinal direction of the guide is the x direction. In the
guide we consider the linear inhomogeneous scalar wave equation,
o
2
t u� c2r2u ¼ s: ð1Þ
Here and elsewhere we use
oi
a ¼

oi

oai
ð2Þ
as a shorthand for partial derivatives. In (1), u is the unknown wave field, c is the given wave speed, and s is a
given wave source function. It is assumed that outside a compact region, where the speed c and the wave
source s may be general, c is constant and s vanishes. On the south, north and west boundaries CS, CN and
CW some boundary conditions are specified. To fix ideas we shall assume the conditions,
u ¼ uW on CW; ð3Þ
oyu ¼ 0 on CS and CN: ð4Þ
Here uW is a given function on CW. To complete the statement of the problem, the initial conditions
uðx; y; 0Þ ¼ u0; otuðx; y; 0Þ ¼ v0; ð5Þ

are given at time t ¼ 0 in the entire domain. We assume that the functions u0 and v0 have a local support.

We now truncate the semi-infinite domain by introducing an artificial east boundary B � CE, located at
x ¼ xE, 0 6 y 6 b; see Fig. 1. This boundary divides the original semi-infinite domain into two subdomains:
an exterior domain D, and a finite computational domain X which is bounded by CW, CN, CS and CE. We
choose the location of CE such that the entire support of s, u0 and v0 and the region of non-uniformity of c

are all contained inside X. Thus, on CE and in D, the homogeneous counterpart of (1) holds, i.e.
o
2
t u� c2r2u ¼ 0; ð6Þ
with a constant coefficient c2, and the medium is initially at rest.
To obtain a well-posed problem in the finite domain X we need to impose a boundary condition on CE. This

must be an ABC so as to prevent spurious reflection of waves. We use the H–W ABC [19]. The starting point
of this ABC is the recursive relations in the vicinity of CE,
ða0ot þ coxÞu ¼ a0ot/1; ð7Þ
ðajot þ coxÞ/j ¼ ðajot � coxÞ/jþ1; j ¼ 1; . . . ; P ; ð8Þ
/Pþ1 ¼ 0: ð9Þ
Here P is the order of the ABC, the /j ðj ¼ 1; . . . P Þ are unknown auxiliary variables defined on the boundary
CE, and the aj are parameters which have to be chosen and which signify (see [19]) cosines of incidence angles.

We make here a few remarks about (7)–(9):

� These recursive relations are a modified version of those defined by Givoli and Neta [17]. The latter, if one
eliminates all the auxiliary variables, yield the Higdon boundary operator [9,10]. In [20] we showed the
advantage of using the modified recursive relations (7)–(9) over the original ones.
� In our previous papers [19–21] the parameter a0 appeared on the left side of (7) but not on the right side.

Indeed, as long as the medium in D is homogeneous (as we assume in this section) one may replace the a0 on
the right side of (7) by the value 1 without loss of generality. However, later we shall consider inhomoge-
neous media, where the presence of a0 on the right side is essential.
� In [21] we discussed the choice of parameters aj, and proposed an adaptive scheme for dynamically updat-

ing them. We showed that the simplest choice aj ¼ 1 is satisfactory in many situations, though we will see
below that evanescent mode corrections lead to significant improvements in long-time performance.
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The set of conditions (7)–(9) involves only first-order derivatives, even though the order P may be arbi-
trarily high. However, it cannot serve as an ABC in its present form due to the appearance of the x-derivative
in (8), which makes it impossible to discretize the /j on the boundary CE alone. Therefore we shall manipulate
(8) in order to get rid of the x-derivative. It is easy to show, by induction, that each auxiliary function /j sat-
isfies the wave Eq. (6), i.e.
o2
x/j þ o2

y/j �
1

c2
o2

t /j ¼ 0: ð10Þ
We now apply the operator aj�1ðajot þ coxÞ to the jth equation in (8), apply the operator ajðajot � coxÞ to the
j� 1 equation in (8), and add the two resulting equations. This eliminates the mixed-derivative terms ðoxt/jÞ
and leaves only terms with the 2nd-order derivatives o2

t and o2
x . Finally we use (10) to eliminate o2

x and obtain
an equation including only the derivatives o2

t and o2
y of the auxiliary variables (see below). This equation holds

for j ¼ 2; . . . ; P . We repeat this process for the case j ¼ 1, using the j ¼ 1 equation in (8) as well as Eq. (7).
Combining all these results gives the complete H–W ABC of order P:
ða0ot þ coxÞu ¼ a0ot/1; ð11Þ

lj;j�1o
2
t /j�1 þ lj;jo

2
t /j þ lj;jþ1o

2
t /jþ1 ¼ c2 mj;j�1o

2
y/j�1 þ mj;jo

2
y/j þ mj;jþ1o

2
y/jþ1

� �
; j ¼ 1; . . . ; P ; ð12Þ

/0 � u; /Pþ1 ¼ 0; ð13Þ
where the coefficients for j ¼ 1 are
l1;0 ¼ 2a1ð1� a2
0Þ; ð14Þ

l1;1 ¼ a0ð1þ 2a0a1 þ a2
1Þ; ð15Þ

l1;2 ¼ a0ð1� a2
1Þ; ð16Þ

m1;0 ¼ 2a1; ð17Þ
m1;1 ¼ a0; ð18Þ
m1;2 ¼ a0; ð19Þ
and the coefficients for j ¼ 2; . . . ; P are
lj;j�1 ¼ ajð1� a2
j�1Þ; ð20Þ

lj;j ¼ ajð1þ a2
j�1Þ þ aj�1ð1þ a2

j Þ; ð21Þ
lj;jþ1 ¼ aj�1ð1� a2

j Þ; ð22Þ
mj;j�1 ¼ aj; ð23Þ
mj;j ¼ aj�1 þ aj; ð24Þ
mj;jþ1 ¼ aj�1: ð25Þ
We note that the ABC Eq. (12) for the auxiliary variables /j involve wave-like operators on the boundary, and
have a symmetric structure.

Initial and edge conditions for the /jðy; tÞ also have to be specified. From the assumption that the support
of the initial solution u is bounded away from the artificial boundary we have
/jðy; 0Þ ¼ 0; ot/jðy; 0Þ ¼ 0: ð26Þ
The edge conditions can be deduced from (4) and the recursive relations (7) and (8) to be
oy/jð0; tÞ ¼ oy/jðb; tÞ ¼ 0: ð27Þ
We finally note that by considering the first order form (7)–(9) transformed to the frequency domain the
connection with PML becomes clear. Solving for the space derivatives we observe that the recursion relations
are formally equivalent to a difference approximation with a purely imaginary, frequency-dependent mesh
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width, similar to what is suggested in [25]. To produce a discretization of a standard PML one would have to
add a real part to the mesh width. Our evanescent mode corrections effectively accomplish this, though in non-
standard form.

3. Properties of the basic H–W ABCs

In [19] the reflection coefficient associated with the H–W ABC of order P was calculated using the recursive
relations (7)–(9). Here we shall rederive the same result using the ABC (11)–(25) itself. The advantage of this
derivation is that it is more direct and will provide us with some additional information. We do, however,
recall the results of [21] which emphasize that the actual accuracy of the method depends on more than the
magnitude of the reflection coefficients computed here.

We ignore the north and south walls of the guide, namely the boundary conditions (4), and consider a solu-
tion u in the form of a propagating plane wave with a given angle of incidence h. (Alternatively, we may con-
sider ‘‘wave guide modes” which take into account the guide wall conditions; the analysis is essentially the
same and the results are identical.) Thus, we take
u ¼ exp½ikðct � x cos h� y sin hÞ� þ R exp½ikðct þ x cos h� y sin hÞ�: ð28Þ

Here i is the imaginary unit, k is the wave number, and h is the angle of incidence. The first term on the right
side represents an outgoing wave, whereas the second term represents a wave spuriously reflected from the
artificial boundary, and its coefficient R is the reflection coefficient. We assume a similar form for all the aux-
iliary variables:
/j ¼ gj exp½ikðct � x cos h� y sin hÞ� þ qj exp½ikðct þ x cos h� y sin hÞ�: ð29Þ
We substitute these expressions into the equations of the ABC (11)–(25), assuming for simplicity that aj ¼ 1
for all j. This yields a linear system of algebraic equations for the coefficients R, gj and qj. We note that only
the sum lj ¼ gj þ qj appears in these equations and not gj or qj separately. In matrix form, these equations
are:
1þ cos h �1 0 � � �
�2S 4� S �S 0 � � �

0 �S 4� 2S �S 0 � � �
..
. . .

.

� � � � � � 0 �S 4� 2S �S

� � � � � � 0 �S 4� 2S

2
6666666664

3
7777777775

R

l1

l2

..

.

lP�1

lP

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

�ð1� cos hÞ
2S

0

0

..

.

0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ð30Þ
where S ¼ sin2 h.
Now we start to ‘‘strip off” this system and express each of the lj in terms of R. First, from the first equa-

tion of the system (30) we get
l1 ¼ ð1� cos hÞ þ Rð1þ cos hÞ: ð31Þ

Then, the second equation of (30) yields:
Sl2 ¼ �2SRþ ð4� SÞl1 � 2S: ð32Þ

We substitute the expression for l1 given by (31) to obtain
Sl2 ¼ �2S þ ð4� SÞð1� cos hÞ þ Rð�2S þ ð4� SÞð1þ cos hÞÞ: ð33Þ

Simple algebra gives the identities
�2S þ ð4� SÞð1� cos hÞ ¼ ð1� cos hÞ3: ð34Þ

Thus (32) yields
Sl2 ¼ ð1� cos hÞ3 þ Rð1þ cos hÞ3: ð35Þ
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Next, the third equation of (30) gives
Sl3 ¼ �Sl1 þ ð4� 2SÞl2: ð36Þ

We multiply both sides by S and substitute the expressions above for l1 and l2, thus obtaining
S2l3 ¼ �S2ð1� cos hÞ þ ð4� 2SÞð1� cos hÞ3 þ R½�S2ð1þ cos hÞ þ ð4� 2SÞð1þ cos hÞ3�: ð37Þ

Simple algebra gives the identities
�S2ð1� cos hÞ þ ð4� 2SÞð1� cos hÞ3 ¼ ð1� cos hÞ5: ð38Þ

Thus we get
S2l3 ¼ ð1� cos hÞ5 þ Rð1þ cos hÞ5: ð39Þ

From now on, the pattern repeats itself, and we obtain similarly
S3l4 ¼ ð1� cos hÞ7 þ Rð1þ cos hÞ7: ð40Þ

Proceeding inductively, the one before last equation in (30) gives us finally:
ðsin hÞ2P�2lP ¼ ð1� cos hÞ2P�1 þ Rð1þ cos hÞ2P�1
: ð41Þ
The last equation of (30) gives us the reflection coefficient R. This equation is
�SlP�1 þ ð4� 2SÞlP ¼ 0: ð42Þ

Substituting the expressions for lP�1 and lP from (41) results, after some manipulation, in
R ¼ � 1� cos h
1þ cos h

� �2Pþ1

: ð43Þ
This is indeed the reflection coefficient derived in a less direct way in [19]. It can be shown that in the more
general case, where the parameters aj take any chosen values, the reflection coefficient becomes
R ¼ a0 � cos h
a0 þ cos h

����
����YP

j¼1

aj � cos h
aj þ cos h

� �2

: ð44Þ
Thus, the reflection coefficient tends to zero exponentially fast as P approaches infinity, regardless of the
values of the parameters aj. Owing to the power two appearing in the expression, the rate of convergence
of R is twice as large as that associated with the Givoli–Neta formulation [17] (or with the theoretical
Higdon ABC).

In [21] we have proposed and used an adaptive scheme based on the norm of the last auxiliary variable, /P .
Namely, we assumed that k/Pk is a good indicator for estimating j R j, and thus increased the order P when at
a certain time step k/Pk was not sufficiently small. Now we are in a position to check this assumption, by
obtaining an explicit expression for lP . By using (43) in (41) and manipulating we obtain
lP ¼
4 cos h

1þ cos h
1� cos h
1þ cos h

� �P

: ð45Þ
From (45) and (43) we also obtain the relation
j lP j¼
4 cos h

1þ cos h

����
���� j RjP=ð2Pþ1Þ

: ð46Þ
Writing this differently we get
j R j¼ aðh; P Þ j lP jð Þ2þ1=P
; ð47Þ
where
aðh; P Þ ¼ 1þ cos h
4 cos h

: ð48Þ
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This relation supports the adaptive strategy proposed in [21] in that it establishes a monotone relation between
j lP j and j R j.

We note, however, that if the incident wave is very oblique ðcos h� 1Þ then, due to the fact that aðhÞ is not
bounded from above the estimate of j R j based on j lP j may be ineffective. An estimate that circumvents this
difficulty is one based on the ratio between lP and lP�1. Simple calculation gives
j R j¼ bðh; P Þ lP

lP�1

����
����

� �2Pþ1

; ð49Þ
where
bðh; P Þ ¼ 2ð1þ cos2 hÞ
ð1þ cos hÞ2

: ð50Þ
Since 1 6 b 6 2, the estimate (49) is expected to be a better choice in an adaptive scheme (at least for P values
not very large) than (47).

For completeness, we end this section by quoting additional properties of the H–W ABC, which have
already been discussed in [20]:

� Decay of the auxiliary variables. For an incident wave field consisting solely of a propagating plane wave,
the magnitude of the auxiliary variable /j becomes smaller as j increases, and approaches zero as j!1,
regardless of the choice of the parameters aj.
� Computational complexity: The ABC has OðPNBÞ complexity per time-step, where NB is the number of

nodes on the boundary. In other words, the computational effort associated with the boundary treatment
increases linearly with the order P of the ABC. This effort is typically marginal (even for quite a large P)
with respect to the total effort required by the entire solution process.
� Accuracy. Numerical experiments for the exterior problem [20] show that for a fixed simulation time, the

solution corresponding to the truncated problem with the ABC imposed, converges exponentially to the
exact solution as the order P approaches infinity. This is consistent with the convergence analysis presented
(for slightly different cases) in [15,23].
� Stability. The H–W formulation for a half-space (i.e. assuming an infinite artificial boundary) is strongly

hyperbolic, and hence well-posed. Numerical experiments show (see [20,21]) that finite difference and finite
element discretization yield a stable scheme, and that stability is maintained even for very long simulation
times.

4. Error generated by truncating the exact operator

The P-order ABC (11)–(13) may be written concisely as
ða0ot þ coxÞuþ a0MP u ¼ 0; ð51Þ
where MP is a linear operator. This is not merely an abstract notation; for given u on the boundary B one can
actually compute MP u by using (12) and (13). The latter constitute P equations for the P unknowns /1; . . . ;/P .
In particular one may solve for /1, and from it calculate
MP u � �ot/1: ð52Þ
We may also consider a theoretical exact boundary condition of the form
ða0ot þ coxÞuþ a0Mu ¼ 0; ð53Þ
where M is the exact boundary operator. Assuming that the ABC converges we must have M ¼ limP!1MP

(see below). It is then interesting to examine the error generated by truncating the exact operator, namely
to calculate kMu�MP uk for some representative solution u and an appropriate norm k � k. We do this numer-
ically in this section. A somewhat similar calculation was done in de Castro’s thesis [29].
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We again consider a propagating plane wave solution. (We may alternatively consider ‘‘wave guide modes,”
leading to the same results.) In contrast to (28) and (29), we ignore reflected waves and assume functions of the
form
u ¼ exp½ikðct � x cos h� y sin hÞ�; ð54Þ
/j ¼ gj exp½ikðct � x cos h� y sin hÞ�; ð55Þ
which are plane waves with angle of incidence h. We substitute these into the P-order ABC Eqs. (12) and (13),
taking aj ¼ 1 as before for simplicity. This gives us a system of equations for the coefficients gj, which we de-
note gðP Þj to emphasize that they are obtained by a P-order ABC. In matrix form this system is
4� S �S 0 . . .

�S 4� 2S �S 0 . . .

0 �S 4� 2S �S . . .

..

. . .
.

. . . 0 �S 4� 2S �S

. . . 0 �S 4� 2S

2
6666666664

3
7777777775

gðP Þ1

gðP Þ2

..

.

..

.

gðPÞP�1

gðP ÞP

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

2S

0

..

.

..

.

0

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; ð56Þ
where S ¼ sin2 h. Note that this system can be obtained from (30) by truncating the first row and column in the
latter.

Since the ABC for u is determined by /1 (see (51) and (52)), the goal in solving (56) is to find gðPÞ1 . Once gðP Þ1

is found, we may calculate
MP u ¼ �ot/
ðP Þ
1 ¼ ikcgðP Þ1 exp½ikðct � x cos h� y sin hÞ�: ð57Þ
This should be compared with the exact value
Mu ¼ �ot/1 ¼ ikcg1 exp½ikðct � x cos h� y sin hÞ�: ð58Þ
Here g1 may be calculated by substituting (54) and (55) in (11), which gives g1 ¼ 1� cos h. Thus the error gen-
erated by the P-order operator may be measured via
EðPÞ ¼ 1� gðP Þ1

g1

�����
����� ¼ 1� gðP Þ1

1� cos h

�����
�����: ð59Þ
It is possible to prove that indeed
lim
P!1

gðPÞ1 ¼ g1 ¼ 1� cos h; ð60Þ
and thus the operator truncation error approaches zero as P tends to infinity. The proof is given in Appendix
A.

Fig. 2 shows the variation of the error EðPÞ as a function of the order P for various values of the incident
angle h. P ¼ 0 corresponds to the Sommerfeld-like boundary condition ðot þ coxÞu ¼ 0. The convergence with
increasing P is clearly exponential, and the convergence slope (which is the power b in the expression
EðP Þ ¼ C expð�bPÞ) decreases with increasing angle of incidence h. For angles of incidence nearly normal to
the boundary the convergence is extremely fast; this is due to our choice of parameters aj ¼ 1. However, even
for very oblique incidence ðh ¼ 85	Þ the ABC truncation error becomes very small for practical values of P

(e.g. E ¼ 10�10 for P ¼ 60). This demonstrates the robustness of the ABC and the fact that one may generally
be content with the simple choice aj ¼ 1.

It is expected that the behavior of the ABC truncation error be similar to that of the reflection coefficient R.
We therefore compare the convergence slopes obtained in Fig. 2 for EðP Þ with those predicted by the expression
(43) for R. This comparison is shown in Fig. 3 where the two error measures are plotted as a function of the
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angle of incidence. We see that indeed they behave very similarly, except at nearly normal incidence. The dis-
crepancy in the latter case may partly be attributed to error in measuring the very steep slope for h ¼ 5	 in
Fig. 2.

We do, however, remind the reader that the representation of the solution in terms of propagating plane
waves is incomplete. Particularly for long time (low frequency) simulations significantly more accurate results
can be obtained if the evanescent modes are explicitly treated.
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5. Dispersive medium

We now consider the case of a dispersive medium, such as the atmosphere or ocean when earth rota-
tion is taken into account (see, e.g. Pedlosky [30]). This amounts to including a non-differentiated term in
the wave equation, which then becomes the Klein–Gordon equation. Thus (1) and (6) are replaced, respec-
tively, by
o
2
t u� c2r2uþ f 2u ¼ s in X; ð61Þ

o2
t u� c2r2uþ f 2u ¼ 0 in D: ð62Þ
We assume that in D (and on CE) f is constant. In X, f may be a function of location.
We define the auxiliary variables /j by using the same recursive relations (7)–(9) as in the non-dispersive

case. Then working along the same line as in Section 2, we easily arrive at the conclusion that the ABC
Eq. (12) remains unchanged except that all occurrences of c2o2

y should be replaced by c2o2
y � f 2. Thus the

ABC of order P is
ða0ot þ coxÞu ¼ a0ot/1; ð63Þ
lj;j�1o

2
t /j�1 þ lj;jo

2
t /j þ lj;jþ1o

2
t /jþ1

¼ c2 mj;j�1o
2
y/j�1 þ mj;jo

2
y/j þ mj;jþ1o

2
y/jþ1

� �
� f 2 mj;j�1/j�1 þ mj;j/j þ mj;jþ1/jþ1

� �
; j ¼ 1; . . . ; P ; ð64Þ

/0 � u; /Pþ1 ¼ 0; ð65Þ
with the same coefficients as given by (14)–(25).
6. Stratified medium

6.1. Preliminary remark

If the medium is inhomogeneous, namely c ¼ cðxÞ, there are a number of versions for the wave equation,
depending on the physical context. Two versions that we shall consider are
r2u ¼ 1

c2ðxÞ o
2
t u; ð66Þ
and
$ � ðc2ðxÞ$uÞ ¼ o2
t u: ð67Þ
For example, Eq. (67) is obtained from the linearized shallow water equations in the case of a flat bottom,
where u is the water surface height (see Pedlosky [30]). In acoustics, if one assumes that the wave speed changes
as a function of location much more significantly than the density, one is led to an equation of the form (66)
for the pressure (see [31]).

We shall extend the ABC in the case of a stratified medium for each of these two wave equations.

6.2. Layers

6.2.1. Interface conditions

If c ¼ cðxÞ is piecewise-constant then we are talking about the case of layers. In this case the wave equation
with a constant wave speed holds inside each layer. On the interfaces between the layers, continuity conditions
are necessary to define a unique solution. One condition is the continuity of u itself; a second condition
involves the continuity of a quantity related to the normal derivative of u. Such conditions can easily be
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obtained in a variational manner. For example, consider Eq. (66). Its weak form, assuming for simplicity zero
Dirichlet or Neumann boundary conditions, is
Z

X
w

1

c2
o2

t udXþ
Z

X
$w � $udX ¼ 0
for an arbitrary w belonging to the weighting space. We write each integral as a sum of integrals over the layers
(or over the elements in a finite element context):
X
e

Z
Xe

w
1

c2
o

2
t u dXþ

X
e

Z
Xe

$w � $udX ¼ 0:
We use the divergence theorem to manipulate the second term and get
X
e

Z
Xe

w
1

c2
o

2
t u dXþ

X
e

Z
oXe

w
ou
on

dC�
Z

Xe
wr2udX

� �
¼ 0:
Since the wave equation holds in each layer (element), we get
X
e

Z
oXe

w
ou
on

dC ¼ 0:
From the arbitrariness of w, and concentrating on a single interface oX12 between two layers, we have
Z
oX12

w
ou
on1

þ ou
on2

� �
dC ¼ 0:
Since n1 ¼ �n2, this gives
Z
oX12

w
ou
on

	 

dC ¼ 0;
where ½�� denotes the jump across the interface. From this weak condition we conclude the strong condition
ou
on

� �
¼ 0. Thus, the two continuity conditions corresponding to the wave Eq. (66) are:
½u� ¼ 0;
ou
on

	 

¼ 0: ð68Þ
Here o=on is the normal derivative on the interface between the layers. In the context of a wave guide with
horizontal layers, o=on ¼ o=oy.

In a similar manner we obtain the continuity conditions corresponding to the wave Eq. (67). They
are:
½u� ¼ 0; c2 ou
on

	 

¼ 0: ð69Þ
6.2.2. ABC for layered media

We assume that the wave guide consists of horizontal layers, each with its own wave speed. We consider the
wave Eq. (67), with continuity conditions (69). The corresponding ABC in each layer has the form (11)–(13).
Let us obtain continuity conditions for the auxiliary variables /j. We will require all the /j to be continuous
across the interfaces. It remains to find the second continuity condition for the /j.

We start with the ABC Eq. (11) for u. Writing it for each layer k separately we have
ðaðkÞ0 ot þ cðkÞoxÞuðkÞ ¼ aðkÞ0 ot/
ðkÞ
1 : ð70Þ
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Here ðkÞ indicates layer k. Dividing by aðkÞ0 we have
ot þ
cðkÞ

aðkÞ0

ox

 !
uðkÞ ¼ ot/

ðkÞ
1 : ð71Þ
All the quantities in this equation except the coefficient c=a0 are continuous. Therefore we must require that
c=a0 be continuous too. This leads to the choice aðkÞ0 ¼ A0cðkÞ, where A0 is a constant which does not depend on
the layer.

Now we differentiate the ABC (71) with respect to y, and then multiply by c2, to obtain
ot þ
cðkÞ

aðkÞ0

ox

 !
ðc2ÞðkÞoyuðkÞ
� �

¼ ðc2ÞðkÞoty/
ðkÞ
1 : ð72Þ
The left side of this equation is continuous. Hence the right side must also be continuous. This means that
py/

ðkÞ
1 is continuous. We thus obtain the following conditions for /1:
½/1� ¼ 0; c2oy/1

� �
¼ 0; ð73Þ
which are identical to the conditions (69) for u.
In a similar fashion, and proceeding by induction, we can show that one should take
al
j ¼

cl

c0

�aj: ð74Þ
Here �aj are layer-independent parameters which should be chosen a priori; they have the same role as the aj in
the homogeneous case. We see that even if we make the simplest choice �aj ¼ 1 for all j, the parameters al

j which
appear in the ABC will vary from layer to layer. The c0 in (74) is a reference wave speed; for example,
c0 ¼ max
l

cl: ð75Þ
Using the al
j given by (74) in (11)–(25) implies that all the coefficients l and m in (12) also become layer-depen-

dent. With the choice of parameters (74), the jump conditions for the /j are similar to those for u, namely
½/j� ¼ 0; ½c2oy/j� ¼ 0: ð76Þ
We now consider the wave Eq. (66), with continuity conditions (68). The corresponding ABC is again (11)–
(13). Following the same lines of derivation as above, we conclude that the choice (74) should be made here
too, which leads to the continuity conditions
½/j� ¼ 0; oy/j

� �
¼ 0 ð77Þ
for all the /j.
We note that in the finite difference method one has to discretize the conditions (76) or (77) directly and

append them to the interior discrete equations. In contrast, in the finite element method these jump conditions
are enforced weakly by the variational formulation as natural boundary conditions [32]. Thus, with finite ele-
ment discretization in space, no direct enforcement of these conditions is necessary.
6.3. Continuous wave speed variation

Now we assume that the wave speed varies in the cross-section of the wave guide continuously, i.e. c ¼ cðyÞ.
A crucial step in passing from the recursive relations (7)–(9) to the ABC is the use of the fact that each /j

satisfies the wave equation (see (10)). This cannot be shown if c ¼ cðyÞ and (7)–(9) are taken with constant
parameters aj. One needs to consider variable aj, namely aj ¼ ajðyÞ. Analogously to the case of layers, we
define (cf. (74))
ajðyÞ ¼
cðyÞ
c0

�aj; ð78Þ
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where the �aj are chosen constant parameters (e.g. �aj ¼ 1 for all j) and c0 is a reference wave speed, say
c0 ¼ maxy2½0;b�cðyÞ. With this choice the y-dependence cancels out from the recursive relations (7)–(9) and they
become
�a0ot þ c0oxð Þu ¼ �a0ot/1; ð79Þ
�ajot þ c0ox

� �
/j ¼ �ajot � c0ox

� �
/jþ1; j ¼ 1; . . . ; P ; ð80Þ

/Pþ1 ¼ 0: ð81Þ
Using these constant-coefficient recursive relations it is easy to show, by induction, that each /j satisfies the
wave equation. It is also possible to obtain an expression for the reflection coefficient R analogous to that ob-
tained in the homogeneous case, (44) (with �aj replacing aj), except that one cannot interpret the results directly
in terms of an incidence angle. One must, of course, replace the plane wave solutions with appropriate modal
solutions of the variable coefficient problem.

It now remains to derive the ABC from the recursive relations. This is done using the same manipulations
as in the homogeneous case. With the wave Eq. (66) and c ¼ cðyÞ, the ABC equations remain exactly as in
(11)–(13), but with the constant c and aj replaced by cðyÞ and ajðyÞ everywhere. On the other hand, with
the wave Eq. (67), the ABC Eq. (12) must be rewritten in the form
lj;j�1o
2
t /j�1 þ lj;jo

2
t /j þ lj;jþ1o

2
t /jþ1 ¼ mj;j�1oyðc2oy/j�1Þ þ mj;joyðc2oy/jÞ þ mj;jþ1oyðc2oy/jþ1Þ;

j ¼ 1; . . . ; P : ð82Þ
All the other expressions remain unchanged. In all cases, it is important to use the y-dependent parameters aj

defined by (78) in the expressions for lj;i and mj;i given in (14)–(25).
7. Inclusion of evanescent modes

7.1. Derivation

In general, a solution to the wave Eq. (1) can be written as a superposition of propagating and evanescent
plane waves. The ABC (11)–(13) takes into account only propagating modes. Ignoring the evanescent modes
may be justified in many cases, since they decay exponentially away from their origin. However, in some sit-
uations the evanescent mode content in the solution may be significant, e.g. when the artificial boundary is
very close to a source or to a physical boundary. In particular, if one requires very high accuracy, the evanes-
cent modes must not be ignored. In fact, without taking account of these modes, our arguments do not imply
that the ABC converges as P !1. (More elaborate analysis does, in fact, show that there is convergence for
finite times. See e.g. [15].)

In the present context, for an artificial boundary whose normal direction is x, an evanescent mode has the
form expð�rxÞV ðy; t; rÞ. The decay rate r characterizes the evanescent mode just as the cosine of angle of inci-
dence a ¼ cos h characterizes the propagating mode. More precisely, the solution at a point on the boundary
may be represented by the formula
uðx; tÞ ¼
Z p=2

0

Gðct � x cos h; yÞdhþ
Z 1

0

e�rxV ðy; t; rÞdr: ð83Þ
Here the first integral represents the propagating modes and the second integral represents the evanescent
modes. This formula, which is inspired by the plane wave translation formula from the Helmholtz fast mul-
tipole method [33], is straightforward to derive from a Fourier–Laplace representation of the solution in
x > �d using data at x ¼ �d, where d is the distance (in the x direction) between the boundary and the loca-
tion of the source (nonzero s in (1) or u0, v0 in (5)) closest to it.

Given this representation, local boundary conditions with P þ E auxiliary functions can now be constructed
independent of the functions G and V. A more general discussion of this approach is given in [27], where they
are termed complete radiation conditions. Precisely, we replace the recursion (7)–(9) by
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a0otuþ coxu ¼ a0ot/1; ð84Þ
ajot/j þ cox/j ¼ ajot/jþ1 � cot/jþ1; j ¼ 1; . . . ; P ; ð85Þ
rj/Pþj þ ox/Pþj ¼ rj/Pþjþ1 � ox/Pþjþ1; j ¼ 1; . . . ;E; ð86Þ
/0 � u; /PþEþ1 ¼ 0: ð87Þ
Here the aj and rj are parameters that have to be chosen. See discussion at the end of this section.
We now derive equations along the boundary satisfied by the auxiliary functions, /j. As in the case of the

pure propagation ABC, it is easy to prove inductively that all /j satisfy the homogeneous scalar wave equation
in a neighborhood of the boundary. We begin by manipulating (85) for 1 < j < P , using the wave equation to
eliminate x-derivatives. This yields the ABC Eq. (12). In a similar fashion we manipulate (86) for j ¼ 2; . . . ;E
to obtain:
�lj;j�1o
2
t /Pþj�1 þ �lj;jo

2
t /Pþj þ �lj;jþ1o

2
t /Pþjþ1 ¼ c2 �mj;j�1o

2
y/Pþj�1 þ �mj;jo

2
y/Pþj þ �mj;jþ1o

2
y/Pþjþ1

� �
þ c2 �sj;j�1/Pþj�1 þ �sj;j/Pþj þ �sj;jþ1/Pþjþ1

� �
: ð88Þ
The coefficients �li;j, �mi;j and �si;j will be defined below. Two additional equations are required at the ‘‘seam”
between the propagating-mode conditions and the evanescent-mode conditions. These equations are formed
from (85) for j ¼ P and (86) for j ¼ 1. Directly we have:
1þ a2
P

aP
o2

t /Pþ1 þ
1� a2

P

aP
� c2

aP
o2

y/Pþ1 þ o2
y/P

� �
¼ 2coxt/Pþ1; ð89Þ

1

r1

o
2
t /Pþ1 þ o

2
t /Pþ2

� �
� c2

r1

o
2
y/Pþ1 þ o

2
y/Pþ2

� �
þ c2r1 /Pþ1 � /Pþ2

� �
¼ �2c2ox/Pþ1: ð90Þ
There are a variety of ways to combine these equations and eliminate the x-derivative. We choose what seems
to be the simplest. We define an additional auxiliary function – the seam function w – by the relation
aPo
2
t w ¼ �2coxt/Pþ1: ð91Þ
Then we have:
lPþ1;Po
2
t /P þ lPþ1;wo2

t wþ lPþ1;Pþ1o
2
t /Pþ1 ¼ c2 mPþ1;Po

2
y/P þ mPþ1;Pþ1o

2
y/Pþ1

� �
; ð92Þ

�l1;1o
2
t /Pþ1 þ �l1;2o

2
t /Pþ2 � cotw ¼ c2 �m1;1o

2
y/Pþ1 þ �m1;2o

2
y/Pþ2

� �
þ c2 �s1;1/Pþ1 þ �s1;2/Pþ2

� �
: ð93Þ
The coefficients in these equations are defined below.
The ðP ;EÞ-order ABC consists of (84), (12) (for j ¼ 1; . . . ; P ), (92) and (93) (the two seam equations), (88)

(for j ¼ 2; . . . ;E) and (87). For clarity, we give here the complete ABC together with the definition of all the
coefficients:
a0otuþ coxu ¼ a0ot/1; ð94Þ

lj;j�1o
2
t /j�1 þ lj;jo

2
t /j þ lj;jþ1o

2
t /jþ1 ¼ c2 mj;j�1o

2
y/j�1 þ mj;jo

2
y/j þ mj;jþ1o

2
y/jþ1

� �
; j ¼ 1; . . . ; P ; ð95Þ

lPþ1;Po
2
t /P þ lPþ1;wo2

t wþ lPþ1;Pþ1o
2
t /Pþ1 ¼ c2 mPþ1;Po

2
y/P þ mPþ1;Pþ1o

2
y/Pþ1

� �
; ð96Þ

�l1;1o
2
t /Pþ1 þ �l1;2o

2
t /Pþ2 � cotw ¼ c2 �m1;1o

2
y/Pþ1 þ �m1;2o

2
y/Pþ2

� �
þ c2ð�s1;1/Pþ1 þ �s1;2/Pþ2Þ; ð97Þ

�lj;j�1o
2
t /Pþj�1 þ �lj;jo

2
t /Pþj þ �lj;jþ1o

2
t /Pþjþ1 ¼ c2 �mj;j�1o

2
y/Pþj�1 þ �mj;jo

2
y/Pþj þ �mj;jþ1o

2
y/Pþjþ1

� �
þ c2 �sj;j�1/Pþj�1 þ �sj;j/Pþj þ �sj;jþ1/Pþjþ1

� �
; j ¼ 2; . . . ;E;

ð98Þ
/0 � u; /PþEþ1 ¼ 0; ð99Þ
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where
l1;0 ¼ 2a1ð1� a2
0Þ; l1;1 ¼ a0ð1þ 2a0a1 þ a2

1Þ; l1;2 ¼ a0ð1� a2
1Þ; ð100Þ

m1;0 ¼ 2a1; m1;1 ¼ a0; m1;2 ¼ a0; ð101Þ
For j ¼ 2; . . . ; P :

lj;j�1 ¼ ajð1� a2
j�1Þ; lj;j ¼ ajð1þ a2

j�1Þ þ aj�1ð1þ a2
j Þ; lj;jþ1 ¼ aj�1ð1� a2

j Þ; ð102Þ
mj;j�1 ¼ aj; mj;j ¼ aj�1 þ aj; mj;jþ1 ¼ aj�1; ð103Þ
Seam coefficients :

lPþ1;P ¼
1� a2

P

aP
; lPþ1;w ¼ aP ; lPþ1;Pþ1 ¼

1þ a2
P

aP
; ð104Þ

mPþ1;P ¼ mPþ1;Pþ1 ¼
1

aP
; ð105Þ

�l1;1 ¼ �m1;1 ¼ �l1;2 ¼ �m1;2 ¼
1

r1aP
; �s1;1 ¼ �

r1

aP
; �s1;2 ¼

r1

aP
; ð106Þ

For j ¼ 2; . . . ;E :

�lj;j�1 ¼ �mj;j�1 ¼
1

rj�1

; �lj;j ¼ �mj;j ¼
1

rj
þ 1

rj�1

; �lj;jþ1 ¼ �mj;jþ1 ¼
1

rj
; ð107Þ

�sj;j�1 ¼ rj�1; �sj;j ¼ �ðrj�1 þ rjÞ; �sj;jþ1 ¼ rj: ð108Þ
It remains to choose the parameters 0 < aj 6 1 and rj > 0. As mentioned previously the solution is not very
sensitive to the values of the aj, and the choice aj ¼ 1 for all j is a reasonable one. We will also employ param-
eters which follow from an approximation to the first integral in (83) via the Radau quadrature rule. Precisely
aj ¼ cos hj with
hj ¼
pðcj þ 1Þ

4
; j ¼ 0; . . . ; P ; ð109Þ
where the cj are the left endpoint Gauss–Radau nodes on ½�1; 1�.
The choice for rj is less obvious, mainly because it is not bounded from above, although the analysis of

Section 7.2 below suggests that the solution should not be very sensitive to it either. One possible scheme
for choosing the rj is based on the approximation of the second integral in (83), which represents the evanes-
cent modes, by a quadrature rule:
Z 1

0

e�rxV ðy; t; rÞdr ’
XE

j¼1

e�rjxV jðy; tÞ: ð110Þ
(Here we include the quadrature weights in the definition of the V j.) Thus it seems reasonable to choose the
rj as the quadrature points used in the approximation (110). In our numerical experiments we have chosen
rj to be the Yarvin–Rokhlin nodes determined by d, the distance between the boundary and the closest
source [34]. We note that the evanescent mode recursion as we have written it is independent of the wave
speed. Thus in subsequent applications to layered media the parameter choices for different layers will be
identical.

7.2. Reflection coefficient

The fact that the basic ABC (11)–(13) yields a ‘‘small” and convergent reflection coefficient (given by (44))
when it encounters a propagating plane wave has been established in Section 3. Since the extended ABC (94)–
(99) involves a combination of propagating and evanescent operators it is less clear a priori how it would
behave in the presence of either propagating or evanescent waves. Now we calculate the reflection coefficients
generated by the ABC (94)–(99) in two cases: (1) when a propagating plane wave impinges on the boundary;
(2) when a pure evanescent plane wave impinges on the boundary.
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We first look for a solution with a right-going propagating wave and a reflected left-going wave:
/j ¼ Aje
iðk1xþk2y�xtÞ þ Bje

ið�k1xþk2y�xtÞ; ð111Þ
where A0 ¼ 1 and B0 is the reflection coefficient. By substituting this form into the recursive relations (84),(87)
and proceeding along the same lines as in the case of the basic ABC, we finally obtain
B0 ¼ �
ðxa0 � ck1Þ
ðxa0 þ ck1Þ

YP

j¼1

xaj � ck1

xaj þ ck1

� �2

�
YE

j¼1

rj þ ick1

rj � ick1

� �2

: ð112Þ
Clearly, the reflection coefficient is zero if xaj ¼ ck1 for some j. Also, B0 goes to zero as P tends to infinity. The
product over the evanescent factors is a complex number with absolute value of one, and hence does not wor-
sen the convergence.

Now we repeat the calculation assuming a solution consisting of an evanescent mode:
/j ¼ Aje
�rxþiðk2y�xtÞ þ Bje

rxþiðk2y�xtÞ; ð113Þ
where A0 ¼ 1 and B0 is the reflection coefficient. In this case we obtain, using the same technique,
B0 ¼ �
ðixa0 þ crÞ
ðixa0 � crÞ

YP

j¼1

ixaj þ cr
ixaj � cr

� �2

�
YE

j¼1

rj � r
rj þ r

� �2

: ð114Þ
The reflection coefficient is zero if rj ¼ r for some j. Also, B0 goes to zero as E tends to infinity. The product
over the propagation factors is a complex number with absolute value of one, and hence does not worsen the
convergence.

In general, convergence requires both P !1 and E !1. Precise error estimates are given in [27,28].

8. Numerical schemes

8.1. Finite element scheme

We shall describe the Finite Element (FE) formulation for the problem using the basic ABC (11)–(13). The
extended ABCs discussed in Sections 5–7 require some modifications, which are rather straightforward and for
the sake of brevity will not be given here.

We consider the problem consisting of (1) in X, the boundary and initial conditions (3)–(5) and the ABC
(11)–(13) on CE. The weak form of this problem is:

Find u 2 S and /j 2 H 1ðCEÞ such that for all w 2 S and all wj 2 H 1ðCEÞ there holds
Z
Xe

wo2
t u dXþ a0c

Z
CE

wotudCþ c2

Z
Xe

$w � $u dX ¼
Z

X
wsdXþ a0c

Z
CE

wot/1 dC; ð115Þ
For j ¼ 1; . . . ; P :
lj;j�1

Z
CE

wjo
2
t /j�1 dCþ ljj

Z
CE

wjo
2
t /j dCþ lj;jþ1

Z
CE

wjo
2
t /jþ1 dC

þ c2 mj;j�1

Z
CE

oywjoy/j�1 dCþ mj;j

Z
CE

oywjoy/j dCþ mj;jþ1

Z
CE

oywjoy/jþ1 dC

� �

¼ 0: ð116Þ
The space S is defined by
S ¼ fw j w 2 H 1ðXÞ and w ¼ 0 on CWg; ð117Þ
H 1 being the Sobolev space of functions in L2 with first derivatives in L2. In these equations one should take
/0 ¼ u on CE and /Pþ1 ¼ 0, according to (13).
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The standard spatial Galerkin FE discretization of (115) and (116) is employed. On the global level, the
variables u and /j are replaced by their finite-dimensional approximations
uhðx; tÞ ¼
XNh;X

A¼1

dh
AðtÞNAðxÞ; x 2 X; /h

j ðs; tÞ ¼
XNh;CE

A¼1

/h
jAðtÞN

ðjÞ
A ðsÞ; s 2 CE: ð118Þ
Here h is the mesh parameter, A stands for a global node number, NA is the global-level shape function asso-
ciated with the variable uh and node A, and N ðjÞA is the global-level shape function associated with variable /h

j

and node A. Note that while NA is a function defined in two dimensions (say NAðx; yÞ), the function N ðjÞA is one-
dimensional (say N ðjÞA ðyÞ). The expansion analogous to this on the element level is
ueðx; tÞ ¼
XN en

a¼1

de
aðtÞNaðxÞ; x 2 Xe; /e

jðs; tÞ ¼
XN en

a¼1

/e
jaðtÞN ðjÞa ðsÞ; s 2 Ce

E: ð119Þ
Here Xe is the domain of element e, Ce
E ¼ CE \ oXe, Na is the element shape function associated with uh and

element node a, N ðjÞa is the element shape function associated with /h
j and element node a, de

a is the nodal value
of ue at node a of element e, /e

ja is the nodal value of /e
j at node a of element e, and N en is the number of

element nodes. Similar expansions are used for the weight functions w and wj.
The FE formulation allows, at least in theory, a general choice of the shape functions, namely different

shape functions N ðjÞa may be chosen for the different variables /j, for j ¼ 0; 1; . . . ; P . We use bilinear or linear
shape functions for all the variables, which is a most convenient choice and turns out to be stable. See [20] for
discussion on the computational aspects of this choice. In the sequel we shall continue to indicate the variable
number j for generality.

Using the approximations (118) in the weak Eqs. (115) and (116) leads to the following system of linear
ordinary differential equations (ODEs) in time:
M€d þ C _d þ Kd ¼ F þ G _/1; ð120Þ
For j ¼ 1; . . . ; P :

Aj
€/j�1 þ Bj

€/j þDj
€/jþ1 þ Ej/j�1 þH j/j þ I j/jþ1 ¼ 0; ð121Þ

/0 � djCE
; /Pþ1 ¼ 0: ð122Þ
Here a dot indicates differentiation with respect to time. The d and /j are the vectors whose entries are the
unknown nodal values of u in X and of /j on CE, respectively. The first equation in (122) means that the en-
tries of the vector /0 are equal to the entries of d for all the nodes on the boundary CE. The element-level
expressions for the arrays appearing in (120) and (121) may easily be deduced from (115) and (116):
Me
ab ¼

Z
Xe

NaN b; dX ð123Þ

Ce
ab ¼ a0c

Z
Ce

E

NaN b dC; ð124Þ

Ke
ab ¼ c2

Z
Xe

$Na � $N b; ð125Þ

F e
a ¼

Z
Xe

Naf ; ð126Þ

Ge
ab ¼ a0c

Z
Ce

E

N aN ð1Þb dC; ð127Þ

ðAe
jÞab ¼ lj;j�1

Z
Ce

E

N ðjÞa N ðj�1Þ
b dC; ð128Þ

ðBe
jÞab ¼ lj;j

Z
Ce

E

N ðjÞa N ðjÞb dC; ð129Þ
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ðDe
jÞab ¼ lj;jþ1

Z
Ce

E

N ðjÞa N ðjþ1Þ
b dC; ð130Þ

ðEe
jÞab ¼ c2mj;j�1

Z
Ce

E

oyN ðjÞa oyN
ðj�1Þ
b dC; ð131Þ

ðH e
jÞab ¼ c2mj;j

Z
Ce

E

oyN ðjÞa oyN ðjÞb dC; ð132Þ

ðIe
jÞab ¼ c2mj;jþ1

Z
Ce

E

oyN ðjÞa oyN ðjþ1Þ
b dC: ð133Þ
The global arrays appearing in (120) and (121) are obtained by the usual FE assembly process from the ele-
ment arrays (123)–(133).

If all the shape functions N ðjÞa are chosen to be identical, i.e. N ðjÞa ¼ Na, and if in addition these boundary
shape functions coincide with the trace of the domain shape functions Na, then it is clear that many element
matrices in (123)–(133) become identical up to a scaling factor. In fact, the matrices C e, Ge, Ae, Be and De all
become factors of the ‘‘boundary mass matrix”

R
Ce

E
Na

�Nb dC, and the matrices Ee, H e and I e all become factors
of the ‘‘boundary stiffness matrix”

R
Ce

E
oyN aoyN b dC. Thus the calculation of the boundary element arrays

becomes very efficient.
In contrast to the solution procedure adopted in [20], we do not split the system of ODEs (120) and (121)

into separate subsystems (one for each j) and pass information among them by performing iterations within
each time-step. Instead we solve the entire system of ODEs as a whole, in a fashion analogous to what we do in
the FD scheme (Section 8.2). Thus, at each time step we do the following:

� For all unknowns associated with u values in X (namely for the entries of d in (120) excluding those asso-
ciated with nodes on CE) we step in time using an explicit second-order scheme (the standard central dif-
ference with a lumped mass matrix, which is the Newmark scheme with b ¼ 0, c ¼ 1=2; see [32]).
� After the u values in X are determined at the current time-step, we solve the complete set of equations for all

the /j (including /0) for this time. From (120) and (121), the augmented system has the form
M/
€Uþ C/

_Uþ K/U ¼ F/: ð134Þ

To solve this system, we step in time using an implicit second-order scheme (the average acceleration, which
is the Newmark scheme with b ¼ 1=4, c ¼ 1=2; see [32]).

The vector U in (134) contains as entries all the /j values at node 1 on the boundary CE, then all the /j

values at node 2 on the boundary, etc. The matrices M/, C/ and K/ are of dimension N/ ¼ ðP þ 1ÞNCE

where NCE
is the number of nodes on the boundary CE. These matrices are all sparse; their maximal band-

width can be shown to be 4P þ 3. These matrices are not symmetric, but they are well behaved. (The moti-
vation to work iteratively in [20] was to keep all matrices symmetric.) As an example we consider the
structure of the element matrix Me

/, which is the element-level counterpart of M/. We give here the expres-
sion for the entry ðMe

/ÞðaiÞðbjÞ of the matrix Me
/, which is the entry associated with the equation parameter-

ized by node a of the boundary element (a ¼ 1; 2) and auxiliary variable i (i ¼ 0; . . . ; P ) and with the
unknown parameterized by node b of the boundary element (b ¼ 1; 2) and auxiliary variable j

(j ¼ 0; . . . ; P ):
ðMe
/ÞðaiÞðbjÞ ¼

Me
ab; i ¼ j ¼ 0

ðAe
i Þab; j ¼ i� 1; i 6¼ 0

ðBe
i Þab; j ¼ i; i 6¼ 0

ðDe
i Þab; j ¼ iþ 1; i 6¼ 0

0; otherwise

8>>>>>><
>>>>>>:

ð135Þ
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The matrix K e
/ has an analogous structure. The matrix C e

/ is defined as
ðCe
/ÞðaiÞðbjÞ ¼

Ce
ab; i ¼ j ¼ 0

�Ce
ab; i ¼ 0; j ¼ 1

0; otherwise

8><
>: ð136Þ
The right-side vector F/ involves known values of u in the ‘‘layer of nodes” immediately adjacent to the
boundary CE.

8.2. Finite difference scheme

We have also implemented a high-order (in practice the code is capable of stable computations up to about
20th order) difference approximation to the wave equation coupled with the boundary system. Assuming a
uniform grid away from the boundaries, spatial derivatives are approximated to order 2q by the standard cen-
tral difference formulas with 2q-point stencils [35]. Near boundaries we replace these by order 2q one-sided
approximations with 2qþ 2-point stencils. On the uniform grid these would be unstable. They are stabilized
via the introductions of a small number (1–3) of additional subcell nodes near the boundaries. Here we have
used 8th order discretizations on the grids constructed in [36] with two subcell nodes near each boundary. We
note that the grids used are optimized for first order systems; analogous constructions for second order prob-
lems are underway [37]. Precisely the same approximations are used for the boundary system.

Introduction of the grids and the difference approximations leads to a semidiscrete system of the form:
d2U i

dt2
¼ ðGUÞi þ F i; xi 2 Interior; ð137Þ

L
d2Ui

dt2
¼ MðGUÞi þ SUi þ m10ðGUÞi � l10

d2Ui

dt2

� �
e1; xi 2 Artificial boundary; ð138Þ

a0

dU i

dt
þ cðDUÞi ¼ a0

dU1;i

dt
; xi 2 Artificial boundary: ð139Þ
Here G denotes the order 2q difference approximation to the Laplacian and D a one-sided, order 2q approx-
imation to the outward normal derivative. We also assume that unknowns associated with nodes on the phys-
ical boundaries have been removed using the boundary conditions.

Time marching of the semidiscrete system is accomplished using an order s Taylor series applied to a first
order reformulation. In particular if we introduce a time step Dt and scaled first derivatives:
V i ¼ Dt
dU i

dt
; Wi ¼ Dt

dUi

dt
; ð140Þ
one obtains a system of the form:
dZ

dt
¼ 1

Dt
HZ; ð141Þ
where Z contains all the unknowns on the grid (including the scaled time derivatives). (For simplicity we have
assumed F i ¼ 0, though nonzero forcings can be incorporated into the method). Note that the matrix H is quite
sparse. It consists of difference operators, the banded matrices M and S, as well as multiplications by L�1. An anal-
ogous reduction of the finite element system would not be sparse due to the mass matrix. Then we approximate:
Zðt þ DtÞ ¼
Xs

j¼0

ZðjÞ; ð142Þ
where
ZðjÞ ¼ 1

j
HZðj�1Þ; Zð0Þ ¼ ZðtÞ: ð143Þ
In the following experiments we choose 2q ¼ s ¼ 8. Note that for the layer problem each layer is gridded
and discretized independently with an enforcement of the continuity conditions at the interface used to update
the interface variables.
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9. Numerical examples

In the following subsections we present some numerical experiments using either the FD or FE scheme or
both. One should recall the following two facts:

� The FD scheme used here is of high order (8th order in the examples shown) in space and time (see Section
8.2) whereas the standard h-version FE scheme used is second order in space and time.
� The discretization error is reduced algebraically when the discretization is refined, whereas the error due the

boundary condition decreases exponentially fast with the ABC order P or P þ E, as we have shown.

Thus, for a given time and space discretization the total error is reduced with increasing P in both the FD and
FE schemes until it reaches the discretization error level, at which point no further reduction in the error is
possible unless the discretization is refined. The value of the ABC order P for which this occurs is much lower
in the FE scheme (typically P ¼ 4 for the examples shown here) than in the FD scheme. Moreover, for a given
discretization in space and time the high-order FD scheme is expected in general to be much more accurate
than the FE scheme. Of course, replacing the standard FE scheme by a high-order FE method (p-version
or spectral elements) is bound to eliminate this limitation in accuracy.

9.1. Homogeneous non-dispersive medium, propagating waves

We start with a wave guide containing a homogeneous non-dispersive medium. We begin by setting
b ¼ 3 and c ¼ 1. Unless otherwise indicated we take uW � 0 in (3). We solve two problems with these
parameters using the FE method. In the first we synthesize a problem whose solution is the analytic
‘‘wave-guide mode”
Fig. 4.
as a f
corresp
uðx; y; tÞ ¼ cos
npy

b

� �
cosðkx� xtÞ; ð144Þ
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eh (h = 0.025)
eh (h = 0.02)

The ‘‘wave-guide mode” problem, homogeneous non-dispersive medium, h ¼ 45	: the L2ðCEÞ error averaged over one time-period
unction of the ABC order P, for three different meshes. Also shown (in dashed lines) are the levels of discretization error
onding to the three meshes.
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where the dispersion relation is
Fig. 5.
as a f
corresp

Fig. 6.
time-p
x2 ¼ c2 np
b

� �2

þ k2

	 

; ð145Þ
and the incident angle h is given by
cos h ¼ kc=x: ð146Þ
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The ‘‘wave-guide mode” problem, homogeneous non-dispersive medium, h ¼ 60	: the L2ðCEÞ error averaged over one time-period
unction of the ABC order P, for three different meshes. Also shown (in dashed lines) are the levels of discretization error
onding to the three meshes.
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The ‘‘wave-guide mode” problem, homogeneous non-dispersive medium, mesh with h ¼ 0:01: the L2ðCEÞ error averaged over one
eriod as a function of the ABC order P, for different angles of incidence.
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We set n ¼ 3 and either k ¼ p, which gives x ¼
ffiffiffi
2
p

p and h ¼ 45	, or k ¼ p=
ffiffiffi
3
p

, which gives x ¼ 2p=
ffiffiffi
3
p

and
h ¼ 60	. The west boundary function uW (see (3)) and all the initial condition values (including the initial val-
ues of the /j) are set according to the analytic solution (144). The computational domain is the square
X ¼ ½0; 3� 
 ½0; 3�.

We use a uniform mesh with bilinear square elements and consider various mesh densities. Namely we vary
the mesh parameter h (the element size), while setting the time-step size Dt so as to maintain cDt=h ¼

ffiffiffi
2
p

=2.
(This value of the Courant number is optimal in terms of dispersion error in one dimension; see [38].) Fig. 4
shows, for h ¼ 45	, the L2ðCEÞ error averaged over one time-period that is generated by the FE scheme, as a
function of the ABC order P. This error is shown for three different meshes. Also shown (in dashed lines) are
the levels of discretization error corresponding to the three meshes, when no domain truncation is involved.
These discretization errors were estimated by comparing the analytic solution (144) to a FE solution obtained
in a long domain and with the same mesh density. Fig. 5 shows similar results for h ¼ 60	. It is apparent that
the total error decreases as P increases until it approximately reaches the discretization error level. In the case
Fig. 7. The compact initial datum problem, homogeneous non-dispersive medium, c ¼ 2: solution color-map snapshots. For each time,
the computational solution (lower of each pair) is compared to a reference solution in a long domain (upper of each pair). Solutions are
shown at times: (a) t ¼ 0, (b) t ¼ 0:397, (c) t ¼ 0:804, and (d) t ¼ 1:096.
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h ¼ 45	 the total errors converge to a value slightly about the discretization error, while for h ¼ 60	 the limit
total error value practically coincides with the discretization error.

Fig. 6 shows, for a mesh with h ¼ 0:01, the error as a function of P for different angles of incidence. It is
important to realize that in the case of wave-guide modes, as opposed to plane waves in free space, the angle of
incidence h is not independent of the wave lengths k and l in the x and y directions, respectively. The depen-
dence between h, k and l is given by (146) and (145) where k ¼ 2p=k and l ¼ 2b=n. For the mode we consider
here we take n ¼ 3; thus setting a certain value for h implies also setting a value for k or k. We note that it is
impossible to take h ¼ 0, namely normal incidence, for n 6¼ 0, since in that case k !1. This is very different
than the situation for plane waves in free space, where normal incidence is regarded as the most basic bench-
mark to be considered.

According to Fig. 6, the error for a sufficiently large P decreases as the angle of incidence becomes more
oblique. At first sight this looks surprising, since one may expect quite the opposite to happen. However,
note that for a smaller angle h one obtain a smaller wave length k, and hence the resolution that the mesh
provides (i.e. number of elements per wave-length and number of time-steps per period) deteriorates. This
immediately implies that the discretization error is larger when the angle of incidence is smaller. The total
error cannot be much lower than the discretization error, even if the ABC error alone becomes smaller for
small angles.

We also note from Fig. 6 that the error decreases (to the discretization error) with increasing P faster for
small angles of incidence. This is caused by the fact that we work with the Padé ABC coefficients, i.e. aj ¼ 1,
which become optimal for angles of incidence close to normal.

The second example concerns initial data (see (5)) of compact support. We set the initial velocity v0 to zero,
while u0 is defined by
Fig. 8.
P and
u0ðx; yÞ ¼
cosðpyÞ 64ðx�2Þ3ð2:8�xÞ3

0:86 ; 2:0 6 x 6 2:8

0; otherwise

(
ð147Þ
The sixth-order polynomial in x appearing here was chosen so that u0 2 C1ðXÞ, namely it rises smoothly from
the value 0 to the value 1 and back to 0. The computational domain is the square ½0; 3� 
 ½0; 3�. The other
parameters are the same as in the previous example. We solve this problem using the FE scheme. Since an
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The Gaussian initial datum problem, homogeneous non-dispersive medium: the L2 error in space as a function of time for various
E values.
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analytic solution corresponding to the given initial data is difficult to obtain, we generate a reference solution
by solving the problem using the same FE scheme in the much longer domain ½0; 8� 
 ½0; 3�.

The L2 error curves behave similarly to those in the previous example. Here we show snapshots of the solu-
tion obtained with h ¼ 0:02 (22,500 elements in the truncated domain and 60,000 elements in the reference
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Fig. 9. The Gaussian initial datum problem, homogeneous non-dispersive medium: comparison of the L2 error in space as a function of
time with and without evanescent mode corrections.
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Fig. 10. The ‘‘wave-guide mode” problem, dispersive medium, f ¼ 1, h ¼ 60	: the L2ðCEÞ error averaged over one time-period as a
function of the ABC order P, for three different meshes. Also shown (in dashed lines) are the levels of discretization error corresponding to
the three meshes.
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domain) and P ¼ 5. Fig. 7 shows the color map of the solution at times t ¼ 0, 0.397 (when the wave fronts just
passed through the east boundary), 0.804 and 1.096. For each time, the computational solution (lower of each
pair) is compared to the reference solution in the long domain (upper of each pair). The excellent agreement
between the two solutions is apparent.

The third example involves a Gaussian initial condition in a wave guide. The exact solution corresponds to
a space-time Gaussian source with variance 35 centered at t ¼ �0:95, x ¼ 0:05033, y ¼ 1=2 with image sources
determined to satisfy Dirichlet boundary conditions on the walls. That is:
Fig. 1
compu
at time
uðx; y; tÞ ¼
X1

k¼�1
ð�Þ

Z t�rk

�1
ððt � sÞ2 � r2

kÞ
�1=2 expð�35ðsþ 0:95Þ2Þds; ð148Þ
where rk is the distance from ðx; yÞ to the kth image source and the signs are chosen to enforce the Dirichlet
conditions
1. The compact initial datum problem, dispersive medium, c ¼ 2, f ¼ 4: solution color-map snapshots. For each time, the
tational solution (lower of each pair) is compared to a reference solution in a long domain (upper of each pair). Solutions are shown
s: (a) t ¼ 0, (b) t ¼ 0:397, (c) t ¼ 0:804, and (d) t ¼ 1:096.
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u ¼ 0; y ¼ 0; 1: ð149Þ

We solve this problem with the high-order FD scheme. Fig. 8 shows the L2 error in space as a function of time
for various boundary condition orders and with P ¼ E. (The initial L2-norm of the solution is Oð1Þ so these are
comparable to relative errors.) Here the parameters for both the P and E terms are chosen according to the
quadrature rules described in Section 7.1. We take d ¼ 1, deliberately avoiding the optimal choice based on the
source location, d � 2. (Choosing d ¼ 2 led to only slight improvements.) The computational domain is taken
to be ½�2; 2� 
 ½0; 1� with the absorbing boundary conditions applied at both ends and we take Dx ¼ Dy ¼ 1

75

and Dt ¼ 1
750

.
Clearly, we observe exponential convergence with increasing order with very little long time error growth.

Extreme accuracy is achieved for P ¼ E ¼ 15 while even for P ¼ E ¼ 3 the long time error remains below
0.35%.

We also compare these results with results obtained using only P terms in the boundary condition; see
Fig. 9. For a fixed total number of auxiliary functions, the P-only conditions are more accurate for short times
but considerably less accurate as t grows. This is consistent with the theory developed in [27].
. The compact initial datum problem, non-dispersive medium, wave-speed varies linearly in the cross-section, with average 2 and
¼ 0:2: solution color-map snapshots. For each time, the computational solution (lower of each pair) is compared to a reference

n in a long domain (upper of each pair). Solutions are shown at times: (a) t ¼ 0, (b) t ¼ 0:397, (c) t ¼ 0:804, and (d) t ¼ 1:096.
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9.2. Dispersive medium

Now we reconsider the first two examples presented in the previous section, but now we include a disper-
sion term in the wave equation; see (61). We set the value of the dispersion parameter to f ¼ 1. We show only
FE results.

The wave-guide mode solution (144) remains unchanged, but the dispersion relation (145) becomes
Fig. 13
slope a
solutio
x2 ¼ c2 npy
b

� �2

þ k2

	 

þ f 2: ð150Þ
The error curves turn out to be very similar to those in the non-dispersive case. For example, compare Fig. 10,
which shows the error in the case h ¼ 60	, with Fig. 5.

Fig. 11 shows the solution snapshots for f ¼ 4, and should be compared with Fig. 7 for the non-dispersive
case. Due to the dispersion effect, the waves are now less local in nature, and the wave fronts moving to the left
and right are much less separated. Again, the computational and reference solutions agree very well.
. The compact initial datum problem, non-dispersive medium, wave-speed varies linearly in the cross-section, with average 2 and
¼ 1:0: solution color-map snapshots. For each time, the computational solution (lower of each pair) is compared to a reference

n in a long domain (upper of each pair). Solutions are shown at times: (a) t ¼ 0, (b) t ¼ 0:397, (c) t ¼ 0:804, and (d) t ¼ 1:096.
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9.3. Linearly-varying wave speed

Now we let the wave speed c vary linearly in the cross-section, i.e. cðyÞ ¼ ay þ b. The following results were
obtained with the FE scheme. We calculate all the FE arrays by exactly evaluating the relevant integrals (see
Section 8.2) involving the function cðyÞ.

Here we consider the compact initial datum problem as described in Section 9.1. We set f ¼ 0 (non-dis-
persive medium). We fix the average wave speed in the cross-section at 2.0, and vary a, the slope of cðyÞ.
The wave speed increases with y, namely it is larger at the top of the wave guide than at the bottom. Figs.
12 and 13 show snapshots of the solution for a ¼ 0:2 and a ¼ 1, respectively. The effect of the varying wave
speed is prominent. In both cases the agreement between the computational and reference solutions is quite
good.

For the wave-guide mode problem, Fig. 14 depicts the L2 error as a function of the wave-speed slope a for
various values of the ABC order P. As in the homogeneous medium case, the error decreases with increasing P

until it reaches the discretization error level. The latter is almost constant for 0 6 a 6 0:6 and then increases
with increasing a.

We now combine the effects of varying wave speed and dispersion, and set a ¼ 1 and f ¼ 4. Fig. 15 shows
the snapshots of the solution. Despite the very rich content of the wave field, the agreement between the com-
putational and reference solutions is satisfactory in this case too.

9.4. Layers

We now use the finite difference method with the same mesh spacings and time steps as in Section 9.1. Now
the domain is ½�2; 2� 
 ½�1; 1�, divided into two horizontal layers of equal width, whose wave speeds are c ¼ 1
and c ¼ 2. Homogeneous Dirichlet conditions are imposed on y ¼ �1. Initial data are u ¼ 0 and
Fig. 14
a: the
ou
ot
ðx; y; 0Þ ¼ 25e�50ðx2þðy�0:9Þ2Þ � 25e�50ðx2þðy�1:1Þ2Þ: ð151Þ
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. The wave-guide mode problem, non-dispersive medium, wave-speed varies linearly in the cross-section, with average 2 and slope
L2ðCEÞ error as a function of a for various values of the ABC order P.
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As a reference solution we use the solution obtained using the same FD scheme in a much longer domain,
½�32; 32� 
 ½�1; 1� up to t ¼ 30 and with the same discretization in space and time. (As the Gaussian is some-
what sharper these calculations are less well resolved than those presented in Section 9.1.)

Fig. 16 shows the L2 error in space as a function of time for various P and E values as well as two choices
for c0. We see that the results again display exponential convergence. The error behavior is essentially uniform
in time with the exception of the highest order conditions. For these we believe we are encountering the effects
of discretization error for t large. Overall, the best performance is obtained with P ¼ E and c0 ¼ 2, though
certainly all our parameter choices led to excellent accuracy at low cost.

In Fig. 17 we compare contour plots of the long domain solution and two truncated domain solutions:
one with P ¼ E ¼ 0 (Sommerfeld condition) and one with P ¼ E ¼ 6 and c0 ¼ 2. Clearly, the latter is
indistinguishable from the long domain solution while use of the Sommerfeld condition leads to obvious
reflections.
Fig. 15. The compact initial datum problem, a dispersive non-homogeneous medium, wave-speed varies linearly in the cross-section, with
average 2 and slope a ¼ 1:0, dispersion parameter f ¼ 4: solution color-map snapshots. For each time, the computational solution (lower
of each pair) is compared to a reference solution in a long domain (upper of each pair). Solutions are shown at times: (a) t ¼ 0, (b)
t ¼ 0:397, (c) t ¼ 0:804, and (d) t ¼ 1:096.
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Fig. 16. The Gaussian initial datum problem, double-layer medium: the L2 error in space as a function of time for various E and P values
and two choices for c0.
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9.5. Evanescent modes

The previous examples with the finite difference method demonstrate the effectiveness of the evanescent
mode corrections. Here we carry out FE calculations specifically designed to assess the treatment of these
modes. We consider a homogeneous non-dispersive medium, as in Section 9.1, including the evanescent modes
in the ABC.

First we synthesize an analytic solution which consists of the single ‘‘wave-guide evanescent mode”
uðx; y; tÞ ¼ expð�rxÞ cosðnpy=bÞ cosðxtÞ; ð152Þ
with the dispersion relation
x2 ¼ c2 npy
b

� �2

� r2

	 

: ð153Þ
We set c ¼ 1, b ¼ 3, n ¼ 3 and r ¼ 1. We apply the FE scheme with P ¼ 2 and a varying number of evanescent
auxiliary variables, E. All the boundary and initial conditions (including the initial conditions for the /j) are



Fig. 17. The Gaussian initial datum problem, double-layer medium: comparison of the long domain solution and truncated domain
solutions using zero (Sommerfeld) and twelve auxiliary functions.
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set such as to correspond to the analytic solution (152). We take aj ¼ 1 for the propagating terms in the ABC
and all the evanescent parameters rj ¼ r1 to be equal. Fig. 18 shows the space-time L2 error as a function of r1

for E ¼ 1; 2; 3; 4. For r1 ¼ r ¼ 1 the error is practically zero (more precisely it is equal to the discretization
error), whereas when r1 6¼ r an error is observed, which decreases with increasing order E of the ABC. This
result is consistent with our analysis in Section 7.2.
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10. Concluding remarks

We have presented a number of extensions to the formulation of absorbing boundary conditions (ABC)
suggested in [19], which is itself a modification of the Higdon ABC written in high order form. The extensions
include the ability to use the ABC for inhomogeneous and dispersive media, as well as taking into account
directly evanescent modes in the exact solution.

These extensions are crucial in the process of turning the proposed ABC into a practical powerful tool in
regional simulations (‘‘limited-area models”) in fields like oil exploration, earthquake engineering, underwater
acoustics and weather prediction. However, the way to achieving such a level of practicality is still very long.
In particular, appropriate ABCs should be constructed for anisotropic media, analogous ABCs should be
developed for more complicated governing equations, like the equations of linear anisotropic elasticity and
Maxwell’s equations. Also, efficient handling of corner conditions (see [19,20] and references therein) has to
be further developed. For FE applications, the ABC should be incorporated in high-order FE formulations
(p-version or spectral elements) in order to fully exploit the high accuracy achieved with increasing ABC
orders. In addition, for applications in weather prediction and oceanography, the ABC must be turned into
an ‘‘open boundary condition” which allows not only free passage of waves from the computational domain
X outside, but also passage into X of waves incoming from the exterior. Extension to three dimensional geom-
etry is also very important. In principle this extension should be straight forward, but of course it is signifi-
cantly more involved technically than the two-dimensional case. We hope to report about progress in some
of these directions in a future publication.

Finally, it would be insightful to compare the performance and relative cost-effectiveness of the proposed
high-order ABCs to that of the perfectly matched layer (PML). We feel that there two types of methods have
emerged in recent years as the dominating techniques for unbounded-domain problems, and those which cur-
rently hold the most promise for the future [1]. A comprehensive and very careful comparison between them,
in the time domain, requires major work which is very much called for.
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Appendix A. The ABC truncation error as P ! ‘

The linear system (56) may be solved for gðP Þ1 using Cramer’s rule:
gðPÞ1 ¼j BP j = j AP j; ðA:1Þ
where j � j denotes the determinant of a matrix, AP is the P 
 P matrix appearing in (56) and BP is the same
matrix but with the first column replaced by the right-side vector of (56). Let us also define the P 
 P Toeplitz
matrix DP as the same as matrix AP but with the (1,1) entry 4� S replaced by 4� 2S. Then a direct calculation
gives
j AP j¼ ð4� SÞ j DP�1 j �S2 j DP�2 j; j BP j¼ 2S j DP�1 j : ðA:2Þ
Hence from (A.1)
gðPÞ1 ¼
2S

4� S � S2 j DP�2 j = j DP�1 j
: ðA:3Þ
Generally, if the n
 n matrix dn has the form
dn ¼

a �b 0 . . .

�b a �b 0 . . .

..

. . .
.

. . . 0 �b a �b

. . . 0 �b a

2
6666664

3
7777775
; ðA:4Þ
where 0 < 2b < a then j dn j> 0 for all n, and
j dn j¼ a j dn�1 j �b2 j dn�2 j : ðA:5Þ
Let us denote
rn ¼j dn j = j dn�1 j : ðA:6Þ
Then from (A.5),
rn ¼ a� b2=rn�1: ðA:7Þ
Since rn > 0 for all n, rn is increasing and rn < a for all n. Therefore there exists the limit
L ¼ lim
n!1

rn; ðA:8Þ
and L P 0. From (A.7) we necessarily have
L ¼ a� b2=L: ðA:9Þ

Substituting the relevant values of a and b we get
L ¼ 4� 2S � S2=L: ðA:10Þ

This yields a quadratic equation for L. Solving it and taking the relevant root (with the plus sign) we get
L ¼ 2� S þ 2 cos h: ðA:11Þ

Now, from (A.3),(A.10) and (A.11) we get
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lim
P!1

gð1ÞP ¼
2S

4� S � S2=L
¼ 2S

S þ 4� 2S � S2=L
¼ 2S

S þ L
¼ 2S

S þ 2� S þ 2 cos h
¼ S

1þ cos h

¼ 1� cos2 h
1þ cos h

¼ 1� cos h: ðA:12Þ
This proves (60), which means that the ABC truncation error approaches zero as P tends to infinity.
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